Normal Zeta Functions of the Heisenberg Groups over Number Rings Ii - the Non-split Case
نویسندگان
چکیده
We compute explicitly the normal zeta functions of the Heisenberg groups H(R), where R is a compact discrete valuation ring of characteristic zero. These zeta functions occur as Euler factors of normal zeta functions of Heisenberg groups of the form H(OK), where OK is the ring of integers of an arbitrary number field K, at the rational primes which are non-split in K. We show that these local zeta functions satisfy functional equations upon inversion of the prime.
منابع مشابه
Normal zeta functions of the Heisenberg groups over number rings I: the unramified case
Let K be a number field with ring of integers OK . We compute the local factors of the normal zeta functions of the Heisenberg groups H(OK) at rational primes which are unramified in K. These factors are expressed as sums, indexed by Dyck words, of functions defined in terms of combinatorial objects such as weak orderings. We show that these local zeta functions satisfy functional equations upo...
متن کاملA Planar, Layered Ultra-wideband Metamaterial Absorber for Microwave Frequencies
In this paper, an ultra-wideband metamaterial absorber is designed and simulated. The proposed absorber is planar and low profile. It is made of a copper sheet coated with two dielectric layers. Each unit cell of the metamaterial structure is composed of multiple metallic split rings, which are patterned on the top and middle boundaries of the dielectrics. The designed absorber utilizes differe...
متن کاملRepresentation Zeta Functions of Some Nilpotent Groups Associated to Prehomogenous Vector Spaces
We compute the representation zeta functions of some finitely generated nilpotent groups associated to unipotent group schemes over rings of integers in number fields. These group schemes are defined by Lie lattices whose presentations are modelled on certain prehomogeneous vector spaces. Our method is based on evaluating p-adic integrals associated to certain rank varieties of linear forms.
متن کاملFunctional Equations for Zeta Functions of Groups and Rings
We introduce a new method to compute explicit formulae for various zeta functions associated to groups and rings. The specific form of these formulae enables us to deduce local functional equations. More precisely, we prove local functional equations for the subring zeta functions associated to rings, the subgroup, conjugacy and representation zeta functions of finitely generated, torsion-free ...
متن کاملA KIND OF F-INVERSE SPLIT MODULES
Let M be a right module over a ring R. In this manuscript, we shall study on a special case of F-inverse split modules where F is a fully invariant submodule of M introduced in [12]. We say M is Z 2(M)-inverse split provided f^(-1)(Z2(M)) is a direct summand of M for each endomorphism f of M. We prove that M is Z2(M)-inverse split if and only if M is a direct...
متن کامل